Закономерности деформационного упрочнения ГПУ- сплавов циркония

Отчет по результатам исследований

Сербента Витас Александрович Руководитель: д. ф.-м.н., доцент Полетика Тамара Михайловна Томский государственный университет Физико-технический факультет, Кафедра механики деформируемого твердого тела

ВВЕДЕНИЕ

Циркониевые сплавы обладают рядом важных физико-механических свойств, являются основным конструкционным материалом. При этом в мировой и российской практике нашло применение лишь небольшое число сплавов на основе циркония и их модификаций, что обусловлено жесткими требованиями, предъявляемыми к их ресурсным характеристикам [1-4]. Для данных сплавов выполнен значительный объем всесторонних исследований, результаты которых используются для повышения технологических и эксплуатационных свойств изготавливаемых изделий [1-10]. ИЗ них Большинство работ в этом направлении выполнено для циркалоев - широко применяемых за рубежом сплавов на основе бинарной системы Zr-Sn.Для отечественных сплавов на основе системы Zr-Nb (Э110, Э635, Э125) количество данных гораздо меньше. В то же время для повышения экономической эффективности использования топлива реакторах В отечественного производства требуется дальнейший рост ресурсных характеристик циркониевых изделий. Здесь на первый план выступают жесткие требования к пластичности материалов на разных стадиях холодной обработки давлением. Для этого необходимо знание закономерностей деформационного поведения циркониевых сплавов, которые определяют

способность к устойчивому пластическому течению без макроскопической локализации деформации.

Целью настоящей работы является анализ деформационных кривых и установление закономерностей деформационного упрочнения ГПУ-сплавов циркония систем Zr-Nb и Zr-Sn.

Для достижения цели были поставлены следующие конкретные задачи:

1. Испытание на растяжение образцов сплавов системы Zr-Nb (Э-125, Э-110, Э-635) и системы Zr-Sn (циркалой-2). Построение диаграмм растяжения.

2. Определение механических характеристик материалов.

3. Анализ деформационных кривых. Выделение стадий деформационного упрочнения.

4. Анализ характера параболического деформационного упрочнения сплавов циркония с использованием различных методов обработки деформационных кривых.

1 Материалы и методы исследования

1.1 Материалы исследования

В качестве материалов исследований выбраны циркониевые сплавы систем цирконий – ниобий (Э125, Э110, Э635) и цирконий – олово (циркалой-2).

В настоящей работе использованные образцы, вырезали из заготовок труб, полученных В результате серии деформационно-термических обработок. Исследуемые полностью сплавы имели практически рекристаллизованную отличающуюся структуру, количественными характеристиками. Химический состав сплавов и информация о составе вторых фаз и размерах их частиц приведены в таблице 1.

Сплав Э110 (Zr – 1%Nb) имел структуру, представляющую собой рекристаллизованные зерна α –Zr со средним размером 5 мкм с дисперсными

включениями частицβ– Nb со средним размером 0,05 мкм внутри и по границам зерен α-Zr.

Сплав Э635 (Zr - 1%Nb - 1.3%Sn - 0.4%Fe) имел рекристаллизованную структуру из зерен α – Zr со средним размером 3 мкм с дисперсными включениями интерметаллидов Zr(Nb,Fe)₂ и Zr₃Fe со средним размером 0,08 мкм внутри и по границам зерен α -Zr.

Сплав Э125 (Zr - 2.5%Nb) имел структуру состоящую из зерен α – Zr со средним размером порядка 1.5мкм с дисперсными включениями частиц β –Nb и β - твердого раствора циркония в ниобии со средними размерами 0.05мкм и 0.25мкм Частицы располагались внутри и по границам зерен. Наличие β - твердого раствора циркония в ниобии и большее количество дисперсных включений по сравнению со сплавом Э110 обусловлено тем, что процентное содержание ниобия (β - стабилизатора) находится выше предела растворимости ниобия в цирконии, который составляет 1÷1.1%. Средний размер α – Zr зерна составлял 1.5 мкм.

Структура сплава циркалой–2 (Zr – 1.2%Sn – 0.5% (Fe+Cr+Ni)) представляла собой зерна α – Zr со средним размером 9 ÷ 12 мкм с включениями интерметаллидов среднего размера 0.15 мкм различного состава: Zr(Fe,Cr)₂, Zr₂(Fe,Ni) и Zr₃(Fe,Cr) [13].

Сплав	Состав	Средний размер зерна (мкм)	Средний размер частиц второй фазы (мкм)	Вторая фаза
Э125	Zr-2,5%Nb	1.5	0.25 0.02	β-Zr β-Nb
Э110	Zr-1%Nb	5	0.05	β-Nb
Э635	Zr - 1%Nb - 1.3%Sn - 0.4%Fe	3	0.08	(Zr,Nb) ₂ Fe Zr(Nb,Fe) ₂ ZrFe ₃
циркалой-2	Zr-1.2%Sn- 0.5%(Fe+Cr+Ni)	12	0.15	Zr(Fe,Cr) ₂ Zr ₂ (Fe,Ni) Zr ₃ (Fe,Cr)

Таблица 1 - Химический и фазовый состав исследуемых сплавов

1.2 Механические испытания

Плоские образцы, изготовленные в виде двусторонней лопатки с размерами рабочей части 42*5*2 мм³ растягивали на электромеханической испытательной машине "WALTER+BAIAG серии LFM – 125кH" при скорости растяжения 0.1 мм/мин, что соответствовало скорости деформации 4*10⁻⁵ с⁻¹

В ходе растяжения образца записывалась зависимость нагрузки от деформации материала. Величину *σ* – напряжение рассчитывали по формуле:

$$\sigma = P/S, \tag{1}$$

где *P* – нагрузка, а *S* – начальная площадь поперечного сечения.

Поскольку для материалов, деформирующихся с образованием шейки, необходимо учитывать изменение площади поперечного сечения, то осуществляли переход от условных σ - ε к истинным координатам s—e, где

$$S = \sigma(1 + \varepsilon), \tag{2}$$

$$e = \ln (1 + \varepsilon). \tag{3}$$

Физический смысл имеют истинные напряжения и истинная деформация, так как они отражают состояние металла в каждый данный

момент деформации, следовательно, являются характеристикой деформационного упрочнения [14,17].

1.3 Методы обработки деформационных кривых

Метод Людвика-Холломона. Для описания кривых деформации поликристаллов, следовательно, и для обработки этих кривых обычно используют эмпирические уравнения, среди которых широко распространенными являются уравнение Холломона[12]:

$$\sigma = K\varepsilon^n,\tag{4}$$

уравнение Людвика [12]:

$$\sigma = \sigma_0 + K\varepsilon^n, \tag{5}$$

где σ₀ – сопротивление кристаллической решетки движению дислокаций, *k* – коэффициент деформационного упрочнения, *n* – показатель деформационного упрочнения.

Следует отметить, что данные формулы описывают только участок однородной деформации кривых упрочнения (от конца площадки текучести до деформации, соответствующей началу образования в образце шейки). Отличительная особенность указанных уравнений заключается в том, что в качестве переменных в нем выступает только деформация и напряжение, остальные параметры являются константами.

Применение приведенных выше уравнений для обработки кривых нагружения позволяет определить эмпирические параметры $\sigma_{0,k}$ и *n*.Один из самых простых способов вычисления параметров деформационного упрочнения предполагает построение экспериментальных данных в логарифмических координатах [10]

$$ln(\sigma) - ln(\varepsilon), \tag{6}$$

при этом показатель деформационного упрочнения п равен:

$$n = \frac{\Delta \ln \sigma}{\Delta \ln \varepsilon} \tag{7}$$

Более точные значения параметров параболического упрочнения можно получить, используя уравнение, позволяющее исключить часть кривой нагружения до σ_0 , определяемую, как правило, условным пределом текучести $\sigma_{0,2}$. После перехода к истинным координатам уравнение Людвика имеет следующий вид:

$$S = S_0 + K e^n, (8)$$

где:

$$S_0 = \sigma_{0.2}(1 + \varepsilon_{0.2}), \tag{9}$$

k - коэффициент деформационного упрочнения, *n* - показатель деформационного параболического упрочнения.

Выбор для расчета S_0 величины условного предела текучести $\sigma_{0.2}$ применим лишь в том случае, когда на деформационной кривой отсутствует зуб и площадка текучести, а наблюдается лишь резкий перелом кривой в области предела текучести. Если на деформационной кривой присутствует площадка или перелом, то для расчета выбирают другую величину – истинный предел текучести σ_e . Согласно [11], необходимость введения новой прочностной характеристики σ_e для описания начального этапа пластической деформации металлов, вызвана тем, что широко используемый условный предел текучести $\sigma_{0.2}$ и физический предел текучести σ_e не считаются строго определенными величинами ни в методическом отношении, ни в плане их физической интерпретации. Определяется величина σ_e путем экстраполяции на нулевое значение деформации первого после перегиба участка деформационной кривой, перестроенной в координатах s – \sqrt{e} .

Анализ стадийности в координатах $\theta - e$ и $\theta - S$. Стадийность деформационного поведения металлических материалов в процессе деформации, как правило, наглядно выявляется на кривых зависимости скорости деформационного упрочнении $d\sigma/d\varepsilon = \theta$ от деформации и напряжения. Обычно рассматривают зависимость $\theta - \varepsilon$ ($\theta - e$) или $\theta - S$, что позволяет выявить на деформационной кривой ряд протяженных участков с различными значениями скорости упрочнения θ [11].

Из литературы известно, что стадийность пластического течения связана со сменой механизма упрочнения, а значит, качественно различными дефектными структурами, возникающими на последовательных стадиях кривой деформации [11]. Первые три стадии деформационного упрочнения (стадия лёгкого скольжения дислокаций, стадия линейного упрочнения и стадия параболического упрочнения) детально проанализированы и хорошо изучены. Стадии IV и V исследованы гораздо меньше. Показано, что переход к стадии IV всегда сопровождается падением скорости деформационного упрочнения, при этом значение θ может, как уменьшаться, так и оставаться постоянным на всём протяжении стадии. Переход к стадии V сопровождается разким перегибом на кривой $\theta - S$. При этом наличие и протяжённость рассмотренных выше стадий деформационного упрочнения определяются особенностями материала и условиями испытаний.

Метод Круссара-Жауля. В основе метода Круссара – Жауля лежит численное дифференцирование уравнения (4)

В результате получается так называемый график Круссара – Жауля в координатах *ln(dS/de)* - *lne*, представляющий кривую упрочнения в виде ломаных линий, состоящих из прямолинейных отрезков с различными углами наклона. Данный метод позволяет провести точное определение границ между стадиями и подстадиями с разным законом деформационного упрочнения.

2 Результаты и их обсуждение

2.1 Закономерности деформационного упрочнения в сплавах циркония

Анализ деформационных кривых растяжении сплавов в условных координатах σ - ε и истинных координатах S - e показал, что они характеризуются параболическим упрочнением и имеют сходный характер

(рисунок 1). Так, на всех деформационных кривых можно выделить переходную стадию, следующую за пределом текучести И коэффициента демонстрирующую уменьшение деформационного упрочнения. Начиная примерно с 2% общей деформации, для исследуемых начинается стадия, имеющая параболический сплавов характер. Механические характеристики исследуемых сплавов циркония приведены в таблице 2.

Перестроенный логарифмических $ln(s-s_0)-ln(e)$ В координатах параболический участок кривой преобразуется в ряд прямолинейных отрезков с тангенсом угла наклона, равным n (рисунок 2). В том случае, если показатель параболичности на протяжении параболической кривой имеет переменное значение, можно наблюдать несколько отрезков с разным наклоном, определяемым величиной n. Наличие нескольких участков свидетельствует о том, что кривую деформации можно описать системой из нескольких уравнений вида (8) с соответствующими значениями параметров k И n. Таким образом, сложный характер параболической стадии деформационных кривых ГПУ – сплавов циркония, заключающийся в разделении их на ряд участков с постоянным в пределах каждой подстадии показателем деформационного упрочнения п, является их общим свойством.

Сплав	Условный предел текучести о _{0,2} , МПа	Предел прочности о _в , МПа	Относительное удлинение б, %	Истинное напряжение <i>S_B</i> , МПа	Истинная деформация <i>е</i> , %
Э110	200	410	18	480	16
Э125	260	430	25	500	22
Э635	375	520	8	560	7
циркалой-2	280	460	20	530	18

Таблица 2 - Механические свойства исследуемых сплавов

Следует отметить, что подобный вид деформационных кривых в логарифмических координатах был ранее обнаружен при растяжении поликристаллического циркония [8]. В литературе такой ход параболических кривых растяжения назван дубль-п поведением ("double-n") [13 - 15], поскольку наблюдалось преимущественно существование двух участков с различным n, хотя возможно существование трех параболических подстадий ("triple-n") и более. Отмечается, что поскольку входящие в уравнение (9) параметры k и n являются эмпирическими, то не всегда имеют простой физический смысл. В тех случаях, когда стадийность параболических кривых выражена достаточно четко, переходы от одной подстадии к другой сопровождаются резкими скачками этих величин, причем особую роль как индикатор стадийности играет показатель параболичности n [11]. Дубль-п поведение деформационных кривых обнаружено ранее при растяжении αжелеза [13], α-Ті [14], двухфазных сталей [15] и других материалов. Существование ряда отрезков на параболической деформационной кривой объясняют закономерностями деформационного упрочнения материала, однако, до сих пор убедительного физического обоснования наблюдаемой стадийности деформационного упрочнения дано не было. Обычно дубль-п поведение параболических кривых связывают со сменой механизма деформационного упрочнения при формировании полос переориентации, с процессом деформационного старения с протеканием динамического возврата и др.

2.2 Анализ стадийности деформационных кривых в координатах $\theta-e$ и $\theta-S$

Традиционный вид зависимости $\theta - e$, показан на рисунке 3 (на примере сплава Э110). Видно, что можно условно разбить параболические кривые в координатах $\theta - e$ на следующие стадии: переходная стадия, демонстрирующая быстрое уменьшение θ , III стадия упрочнения ($n \ge 0,5$), на

которой падение величины θ замедляется, IV стадия при n < 0,5 с низким и практически постоянным упрочнением. Четких границ между стадиями выявить таким способом не удается.

Более результативным оказался анализ кривых упрочнения в координатах $\theta - S$: удалось выделить три стадии с разным законом упрочнения (рисунок 4): стадия III с показателем параболичности $n \ge 0,5$, стадия IV при 0,5> n > 0,2 и стадия V с n < 0,2. Общим для кривых упрочнения всех исследуемых сплавов является то, что переход к стадии IV соответствует изменению показателя параболичности до n < 0,5. После достижения напряжения истинного предела прочности наблюдается резкий перелом на кривой $\theta - S$ с последующим уменьшением θ до нуля, что соответствует переходу к стадии V, на которой показатель параболичности n < 0,2.

На рисунке 4 видно, что на стадии IV можно выделить участки с разным наклоном зависимости $\theta - S$, что наиболее ясно просматривается на кривых упрочнения для сплавов Э110 и Э125. Сравнение с кривыми упрочнения на рисунке 2, показывает, что данные участки соответствуют параболическим подстадиям с разными значениями *n*. Таким образом, отрезок параболической кривой сплавов циркония, на котором реализуется поведение типа «дубль-*n*», т.е. разделение на участки с разным наклоном, соответствует IV стадии деформационного упрочнения, протяженность которой всегда находится в пределах деформаций, которые соответствуют 0,5> $n \ge 0,2$. Таким образом, IV стадия, на кривых упрочнения сплавов циркония, является сложной и требуется детального изучения.

2.3 Анализ деформационных кривых по методу Круссара - Жауля

Точное определение границ между стадиями и подстадиями с разным законом деформационного упрочнения возможно путем обработки кривых упрочнения с помощью метода Круссара – Жауля, в основе которого лежит

численное дифференцирование уравнения (5). Кривые деформационного упрочнения после параболической аппроксимации уравнением (5) были численно продифференцированы и перестроены в двойных логарифмических координатах. На рисунке 5 представлены графики Круссара – Жауля, из которых видно, что кривые упрочнения преобразовались в ломаные линии, состоящие из прямолинейных отрезков с различными углами наклона. Рисунок 5 в явном виде иллюстрирует стадийность деформационного упрочнения сплавов циркония: кривые упрочнения состоят из ряда стадий, каждая из которых описывается уравнением:

$$ln \left(\frac{d\sigma}{de} \right)_{i} = ln \left(k_{i} n_{i} \right) + \left(n_{i} - 1 \right) ln e, \qquad (10)$$

где индекс i = 1, 2, 3 ... обозначает номер отдельной стадии. Значения e_i соответствуют изломам кривых на рисунке 5 и позволяют с помощью данных на кривых *S* - *e* находить значения σ_i . Величины n_i – 1 и *ln* ($k_i n_i$) являются коэффициентами уравнений прямолинейных отрезков.

Анализ кривых Круссара – Жауля показал, что каждая ИЗ параболических подстадий с наклоном, определяемым в координатах $ln(S - S_0) - ln(e)$ показателем параболы *n*, в координатах ln(dS/de) - ln(e)состоит из двух участков. Первый из участков всегда характеризуется падением скорости деформационного упрочнения, а второй – замедлением ее некоторым ростом. Переходы падения или между участками сопровождаются скачками величин k_i и n_i, и даже сменой знака этих параметров, что является отражением развития динамических процессов «разупрочнения - упрочнения». Параметры k_i и n_i , полученные из кривых Круссара-Жауля, качественно хорошо отражают ход деформационного упрочнения, однако определить их физический смысл затруднительно. Таким образом, на протяжении одной подстадии в координатах $ln(S - S_0) - ln(e)$ реализуются процесс «разупрочнения–упрочнения», причем до разрушения он может повторяться 2, 3 и более раз. Наиболее резкий спад скорости деформационного упрочнения во всех сплавах происходит на V стадии при значениях n < 0,2, что сопровождается образованием шейки.

Появление подобных приостановок упрочнения на определенных участках деформационных параболических кривых обычно связывают с различными динамическими релаксационными процессами в результате структурных перестроек: возврата, рекристаллизации, образования полос переориентации, зернограничного проскальзывания и др. [11, 13-15].

Ранее в работах, проведенных в ИФПМ СО РАН показано, что деформационное поведение ГПУ- сплавов циркония является сложным и определяется упругопластической анизотропией материала [16,17]. Согласованность пластического формоизменения структурных элементов материалов предполагает одновременное такого рода вовлечение В деформацию структурно-масштабных уровней. различных Так, на параболической стадии деформационного упрочнения ГПУсплавов циркония обнаружено явление колебательной неустойчивости пластического течения, которое проявляется во взаимосогласованном периодическом изменении картины распределения макролокализованной деформации в образце, определенной методом спекл-фотографии. В работах [11, 16] показано, что подобная неустойчивость связана с возникновением и развитием градиента скорости деформации в процессе периодически прогрессирующего уменьшения поперечного сечения образца при формировании шейки. Именно развитие макролокализованной деформации находит проявление В возникновении развитии колебательной И неустойчивости пластического течения, что приводит к дискретности изменения показателя деформационного упрочнения *n* на параболической деформационной кривой. Переход к значениям *n*<0.5 показывает момент пластического потери устойчивости течения, связанной с началом формирования шейки.

В работах [16-19] установлена причина ранней потери устойчивости на мезо- и микроуровнях. Установлены следующие закономерности: 1)

взаимосвязь колебательной неустойчивости пластического течения co структурно - ориентационной неустойчивостью в очаге локализованной деформации, обеспечивающей формирование текстуры [16-19]; 2) колебательным взаимосвязь между характером изменения скорости деформации «упрочнение-разупрочнение» В режиме И циклическим характером дислокационных превращений [17-19]. При этом упрочнение обеспечивается накоплением дислокаций и формированием субструктуры, а разупрочнение связано с разрушением субграниц и перераспределением дислокаций с уменьшением их плотности. Периодичность структурных перестроек включает изменение размера, формы зерен, субзерен и их ориентации и сопровождается существенным измельчением зеренной структуры материала в очаге деформации в процессе его трансформации в шейку.

ЗАКЛЮЧЕНИЕ

Выявлен сложный характер параболической стадии кривых деформации сплавов циркония, заключающийся в разделении ее на ряд участков c переменными значениями показателя скорости И деформационного упрочнения. Использование специальных методов анализа параболических деформационных S-e кривых _ аналитической аппроксимации уравнением Людвика в координатах $ln(S-S_0)-ln(e)$, а также метода Круссара-Жауля в координатах ln(dS/de)-ln(e) позволило установить, что кривые упрочнения сплавов циркония являются многостадийными. Показано, что их можно аппроксимировать кусочно-непрерывной функцией, состоящей из последовательности фрагментов типа уравнения Людвика с различным наклоном, определяемым показателем деформационного упрочнения n, что свидетельствует о реализации, так называемого «дубль-n» поведения деформационных кривых (в нашем случае – «поли-*n*» поведение). Ha Круссара-Жауля кривых выявлены границы между участками

(подстадиями) с различными значениями скорости деформационного упрочнения.

Рисунки к работе

Рисунок 1 - Деформационные кривые исследуемых сплавов в условных (а) и истинных (б) координатах.

Рисунок 2 - Характер параболической стадии деформационного упрочнения в сплавах циркония, перестроенной в логарифмическом масштабе.

Рисунок 3 - Кривая деформационного упрочнения для сплава Э110 в

S, МПа

Рисунок 4 (продолжение) - Зависимости коэффициента деформационного упрочнения от истинного напряжения для сплава Э635 и циркалой-2.

Рисунок 5 - Зависимости скорости деформационного упрочнения от истинной деформации для сплава Э110 и Э125.

e

Рисунок 5 (продолжение) - Зависимости скорости деформационного упрочнения от истинной деформации для сплава Э635 и циркалой-2.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1 Займоский А.С., Никулина А.В., Решетников Н.Г. Циркониевые сплавы в ядерной энергетике// М.: Энергоатомиздат. - 1994. - С. 253.

2 Ривкин Ю.И., Родченков Б.С., Филатов В.М. Прочность сплавов циркония// М.: Энергоатомиздат. - 1974. - С. 168.

3 Дуглас Д. Металловедение циркония// Пер. с англ./ Под ред. Займовского А. С. АНСССР. М.: Атомиздат. - 1975. - С.357.

4 Бескровайный Н.М., Калин Б.А., Платонов П.А., Чернов И.И. Конструкционные матеириалы ядерных реакторов // М.: Энергоатомиздат. - 1995. - С. 704.

5 Амбарцумян Р.С., Киселев А.А. Механические свойства и коррозия циркония и его сплавов в воде, паре и газах при повышенных температурах// Труды Второй международной конференции по мирному использованию атомной энергии. Т. 3. Ядерное горючее и реакторные материалы. - М. Энергоатомиздат. - 1959. - С. 486.

6 Никулина А.В., Маркелов В.А. Сплав Zr-1%Nb-1%Sn-0.5%Fe для труб технологических каналов реакторов типа РБМК // Вопросы атомной науки и техники Металловедение и новые материалы. - 1990. -N 2(36). - C. 58-66.

7 Маркелов В.А., Рафиков В.З., Никулин С.А., и др. Изменение микроструктуры сплава циркония с оловом, ниобием и железом при деформационно-термической обработке //ФММ. - 1994. -Т. 77. - Вып. 4. - С. 70 – 79.

8 Папиров И.И., Тихинский Г.Ф. Природа пластической деформации циркония (Часть 1) // Харьков: Харьковский ФТИ. - 1976. - С.
36.

9 Черняева Т.П., Грицина В.М. Характеристики ГПУ-металлов, определяющие их поведение при механическом, термическом и радиационном воздействии // Вопросы атомной науки и техники. – 2008. – 2. – С. 15-27.

10 Tenckhoff E. Reviewofdeformation mechanisms, texture, and mechanical anisotropy in zirconium and zirconium based alloys // ASTM symposium on Zirconium in the nuclear industry: fourteenth international symposium. -2006. - P. 25-30.

11 Трефилов В.И., Моисеев В.Ф., Печковский Э.П. Деформационное упрочнение и разрушение поликристаллических металлов. – Киев :Наукова думка, 1989. – 256 с.

12 Xu F., Holt R.A., Daymond M.R. [и др.]. Development of internal strains in textured Zircaloy-2 during uni-axial deformation // Materials Science and Engineering: A. - 2008. – V. 488. - 172 – 185 P.

13 Monteiro S.N., Reed-Hill R. E. On the "double-n"behavior of iron // Metallurgical Transactions. -1971. –Vol. 2. –P. 2947-2948.

14 Москаленко В.А., Смирнов А.Р., Ковалева В.Н., Нацик В.Д. Стадийность деформационного упрочнения поликристаллического титана при низких температурах и ее связь с эволюцией субструктуры // Физика низких температур. -2002. –Т. 28, № 12. –С. 1310-1319.

15 Paruz H., Edmonds D.V. The strain hardening behavior of dual-phase steel // Materials Science and Engineering: A. -1989. -Vol. 117. –P. 67-74.

16 Полетика Т.М., Пшеничников А.П. Нелинейный характер макролокализации деформации в ГПУ-сплавах циркония // Журнал технической физики. -2009, -Т. 79, вып.3.– С. 54-58.

17 Полетика Т.М., Пшеничников А.П., Гирсова С.Л. Структурноориентационная неустойчивость пластического течения в сплаве Zr-1% Nb // Письма в Журнал технической физики. -2011. -Т. 37, вып. 7. – С. 16-22.

18 Полетика Т.М., Пшеничников А.П., Гирсова С.Л. Эволюция микроструктуры и микротекстуры в процессе формировании шейки в сплаве

Zr-1%Nb // Журнал технической физики. -2011, -Т. 81, вып.11.–С. 82-88.

19 Полетика Т.М., Гирсова С.Л., Пшеничников А.П. Цикличность эволюции дефектной структуры в очаге макролокализации деформации в ГПУ- сплаве Zr–Nb // Деформация и разрушение материалов. -2010, № 9. –С. 6-12.