Компьютерное моделирование траекторий движения капли воды при охлаждении шлакового поля

Д.С. Прокопьева

Научный руководитель - Н.Н. Синицын, доктор технических наук, профессор.

Череповецкий государственный университет

При проектировании сложной оросительной системы возникает задача размещения распылителей таким образом, чтобы добиться эффективности работы. При необходимости максимальной ИХ какой-либо равномерного орошения поверхности, обеспечения максимальная равномерность будет достигаться при выполнении следующих условий: вся заданная поверхность смачивается жидкостью, т.е. перекрывается факелами; взаимное наложение факелов на уровне орошаемой поверхности минимально; количество жидкости, выпадающее на орошаемую поверхность минимально.

Эти условия соответствуют минимальному значению коэффициента избыточного орошения ξ , представляющего отношение суммарной площади факелов всех распылителей S_{ϕ} к площади орошаемой поверхности S_{op} [1]:

$$\xi = \frac{S_{\Phi}}{S_{\rm op}}.$$

Независимо от типа распылителей решение будет определяться формой орошаемой поверхности. По этому признаку все известные варианты можно свести к трем: кольцевое сечение, круглое и прямоугольное.

Для орошения площадей больших размеров, независимо от формы площади, возможны два простых способа расстановки распылителей: в узлах прямоугольной сетки со сторонами $a = 2r_{\phi}cos\varphi$; $b = 2r_{\phi}sin\varphi$ и в вершинах равнобедренных треугольников с основанием $d = 2r_{\phi}sin\varphi$ и высотой $h = 2r_{\phi}cos^2\left(\frac{\varphi}{2}\right)$ (рис.1 [1]).

Рис.1 Расчетные схемы размещения распылителей для образования совокупного факела. а) прямоугольная расстановка; б) шахматная расстановка.

В первом случае $\xi_{\rm пр} = \frac{\pi}{4sin\varphi \cdot cos\varphi}$ будет минимальной при $\varphi = \frac{\pi}{4}$ ($\xi_{\rm пр}^{min} = 1,57$), когда сетка превращается в квадратную. Во втором случае, где $\xi_{\rm koc} = \frac{\pi}{2sin\varphi + sin2\varphi}$. Эта функция имеет минимум при $\varphi = \frac{\pi}{3}$ и равна 1,21.

Из сравнения видно, что при косоугольной расстановке доля однократно орошаемой поверхности выше. При таком размещении $b = c = r_{\phi}\sqrt{3}$; $h = \frac{3}{2}r_{\phi}$, т.е. распылитель устанавливают в вершинах равносторонних треугольников; такую расстановку называют шахматной.

В обоих случаях связь размера сечения площади орошения (пусть это ширина сечения H) с радиусом факела имеет вид:

$$H = (N-1)h + 2r_{\rm b} ,$$

где *N*-число рядов распылителей, *r*_ф - радиус факела.

Процесс распыления, независимо от конструктивной схемы форсунки, состоит из следующих фаз: течение жидкости в струе, течение в пленке по поверхности отражателя, срывы пленки с этой поверхности и распада ее на капли.

Для практических целей интересна толщина пленки и средняя скорость течения жидкости в ней на внешней кромке отражателя, которые определяют дисперсность распыливания и гидродинамику факела. В зависимости от размеров сопла, скорости истечения струи и размеров отражателя кромка последнего может оказаться в любой из зон вязкого течения: потенциального течения и вязкого течения.

Толщину пленки в области $R_{\rm cm} < R < R_{\rm r.n.}$ можно определить из условия постоянства расхода:

$$S_{\rm n.n.} = \frac{G_{\rm sc}}{2\pi R_{\rm cm} w R_{\rm cp}}$$

Размер образующихся капель для форсунок со сплошным отражателем можно определить по эмпирическому уравнению, полученному в работе [1]:

$$\frac{d_{32}}{d_c} = 4,71 \cdot 10^{-2} G a^{-0,59} \cdot F r^{-0,5}$$

Здесь $Ga = \frac{g \cdot d_c^3 \cdot \rho_m^2}{\mu_m^2}$ - критерий Галилея; $Fr = \frac{w^2}{gd_c}$ - критерий Фруда; g – ускорение свободного падения; d_c - диаметр сопла; ρ_m -плотность жидкости; μ_m - динамический коэффициент вязкости жидкости; G_{π^-} массовый расход жидкости; R_{cm} , R, $R_{r.n.}$ - радиус смыкания, текущий радиус и радиус области гидравлического прыжка; wR_{cp} - средняя скорость течения пленки; d_{32} - объемно-поверхностный диаметр капли.

Движение капель в газовом потоке описывается уравнением движения частиц переменной массы В.М.Мещерского [2]:

$$m\frac{d\vec{V}}{d\tau} = \sum_{i=1}^{k} \overrightarrow{P_{i}}$$
 , ,

где $\sum_{i=1}^{k} \vec{P_i}$ - сумма всех сил, действующих на каплю в газовом потоке; $m = \frac{\pi \delta^3 \rho}{6}$ - масса капли, изменяющаяся во времени; $m = m(\tau)$; δ начальный диаметр капли; ρ - плотность воды; \vec{V} - скорость движения капли; τ - время.

На каплю, движущуюся в газовом потоке, действует сила аэродинамического сопротивления $\overrightarrow{P_c}$ и сила тяжести $\overrightarrow{P_B}$:

$$\vec{P}_{\rm c} = \frac{1}{2} c_m f \rho_{\rm r} (\vec{W} - \vec{V}) |\vec{W} - \vec{V}|;$$
$$\vec{P}_{\rm B} = \vec{g} m ,$$

где c_m - коэффициент аэродинамического сопротивления капли; $f = \frac{\pi \delta^2}{4}$ - площадь миделева сечения частицы (капли); ρ_{Γ} - плотность газового потока; \vec{V}, \vec{W} - соответственно скорости движения капли и газового потока; \vec{g} - вектор ускорения свободного падения (рис.2).

Рис.2 Схема к расчету траектории движения капли воды в газовом потоке.

 r_0 - радиус капли; \vec{W} , \vec{V} - ректоры скоростей газа и капли; \vec{A} , \vec{P} , \vec{F} - силы аэродинамического сопротивления, тяжести и инерции соответственно; τ - время; $r_{n,r}$ - внешний радиус приведенной пленки.

Движение одиночной капли воды в проекциях в двухмерной системе координат задается уравнениями:

$$\begin{cases} m \frac{dV_x}{d\tau} = \frac{c_m f \rho_{\Gamma}}{2} (W_x - V_x) \sqrt{(W_x - V_x)^2 + (W_x - V_x)^2} \\ m \frac{dV_y}{d\tau} = \frac{c_m f \rho_{\Gamma}}{2} (W_y - V_y) \sqrt{(W_y - V_y)^2 + (W_y - V_y)^2} - mg \end{cases}$$
(1)

где V_{x} , V_{y} - проекции скорости движения капли; W_{x} , W_{y} - проекции скорости движения газового потока; $c_{m} = f(Re)$ - коэффициент аэродинамического сопротивления капли, определяемый в зависимости от значения критерий Рейнольдса:

при Re < 1 (область Стокса) $c_m = \frac{24}{Re}$; при $1 \le Re \le 10^3$ (переходная область) $c_m = \frac{24}{Re} + \frac{4}{\sqrt[3]{Re}}$ - (формула Шелла-Клячко);

при $2 \cdot 10^4 \le Re \le 2 \cdot 10^5$ (автомодельная область) $c_m = 0,48$; при $Re > 2 \cdot 10^6$ (закритическая область) $c_m = 0,2$.

На рис.3 (а, б) показаны траектории движения капли диаметром 2 мм в попутном потоке и во встречном потоке воздуха. Скорость потока воздуха изменяется от 0 до 20 м/с. Максимальное отклонение от вертикальной оси (оси форсунки) при попутном потоке увеличивается на 25%.

Рис.3 Расчет траектории движения капель воды в попутном потоке a); и во встречном потоке б).

Траектории капель воды в потоке газа позволяют спрогнозировать площадь орошения поверхности в зависимости от влияния скорости ветра на промышленной установке.

Таким образом, предложена математическая модель расчета траектории движения капель воды в газовом потоке, с учетом влияния массы капель, начальной скорости вылета капли, угла вылета и скорости ветра.

СПИСОК ЛИТЕРАТУРЫ

1. *Пажи Д.Г., Галустов В.С.* Основы техники распыливания жидкостей. – М.: Химия, 1984. 254с.

2. Полеводова Л.А. Расчет траекторий движения капли воды с учетом фазовых переходов в системе газоочистки кислородного конвертера. / Н.Н.Синицын, Л.А.Полеводова. // Вестник Воронежского государственного технического университета. – Воронеж, ВГТУ-2007.-т.3-№6-С.160-164.